毕业论文

打赏
当前位置: 毕业论文 > 电子通信 >

1700VSiCDMOS器件的优化仿真设计

时间:2017-05-30 10:40来源:毕业论文
论文研究了具有电流扩展层(CSL,Current Spreading Layer)结构的SiC DMOS器件,主要通过器件数值仿真工具Silvaco优化击穿电压和导通电阻的矛盾关系

摘要碳化硅(SiC)材料作为第三代半导体的典型代表,凭借其宽带隙、高电子饱和漂移速度、高临界击穿电场、高热导率等特点成为制作高压大功率、抗辐照、耐高温电力电子器件的理想材料,尤其是碳化硅垂直双扩散场效应管(SiC DMOS)在高压大功率领域拥有巨大的优势和潜力。本论文研究了具有电流扩展层(CSL,Current Spreading Layer)结构的SiC DMOS器件,主要通过器件数值仿真工具Silvaco优化击穿电压和导通电阻的矛盾关系,获得击穿电压2350V、比导通电阻10.13mΩ•cm2的SiC DMOS元胞。在此基础上应用场板、JTE和场限环三种结终端技术,获得击穿电压2050V的器件终端结构,达到元胞击穿电压的90%。通过对SiC DMOS器件结构参数与器件性能的折衷关系的研究,为高压SiC功率器件的研制提供了理论指导和技术支持。9366
关键词  SiC DMOS 击穿电压 导通电阻 结终端技术
毕业设计说明书(论文)外文摘要

Title    Design,optimization and simulation of 1.7kV SiC DMOS                       
Abstract
Silicon Carbide(SiC) is a typical material for the 3rd generation semiconductor. Owing to its wide band-gap, high electron saturation drift velocity, high critical breakdown field, high thermal conductivity, SiC has become an ideal material for high power devices. The SiC DMOS plays a promising and essential role in the field of high voltage power devices. In this paper a SiC DMOS with a Current Spreading Layer (CSL) structure has been discussed. Using the simulation tool Silvaco, the breakdown voltage and the on-resistance have been optimized and a 2350V,10.13mΩ•cm2 SiC DMOS has been achieved. Field Plate, Junction Termination Extension and Field Limiting Ring have been applied to the edge termination of the device to decrease the curve effect and increase the junction breakdown voltage up to 2050V, which is 90 percent of the breakdown voltage of the DMOS cell. The final compromise relationship between device structure parameters and device performance provide theoretical guidance and technical support for the development of high-voltage SiC devices.
Keyword  SiC  DMOS  breakdown-voltage  on-resistance  Junction Termination Technology
目   次
1    绪论    1
1.1.    碳化硅功率半导体器件发展现状    1
1.1.1.    国外发展现状    1
1.1.2.    国内研究现状    2
1.2.    SiC功率DMOS的研究意义    2
1.3.    研究内容    3
2    SiC DMOS器件基础    5
2.1.    SiC 材料特性    5
2.2.    功率DMOS器件    6
2.2.1.    DMOS器件结构介绍    6
2.2.2.    VDMOS结构特点    8
2.2.3.    带CSL结构的VDMOS电学参数    9
2.3.    SiC功率MOS的物理模型    14
2.3.1.    半导体器件基本方程    14
2.3.2.    禁带宽度变窄(BGN)模型    15
2.3.3.    碰撞电离模型    16
2.3.4.    迁移率模型    16
2.4.    仿真软件Silvaco简介    18
3    SiC DMOS器件优化仿真设计    19
3.1.    栅氧厚度对阈值电压Vth的影响    19
3.2.    P-base浓度对导通电阻Ron和击穿电压BV的影响    20 1700VSiCDMOS器件的优化仿真设计:http://www.751com.cn/tongxin/lunwen_8073.html
------分隔线----------------------------
推荐内容